Cu,Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst.

نویسندگان

  • D L Piddington
  • F C Fang
  • T Laessig
  • A M Cooper
  • I M Orme
  • N A Buchmeier
چکیده

Macrophages produce reactive oxygen species and reactive nitrogen species that have potent antimicrobial activity. Resistance to killing by macrophages is critical to the virulence of Mycobacterium tuberculosis. M. tuberculosis has two genes encoding superoxide dismutase proteins, sodA and sodC. SodC is a Cu,Zn superoxide dismutase responsible for only a minor portion of the superoxide dismutase activity of M. tuberculosis. However, SodC has a lipoprotein binding motif, which suggests that it may be anchored in the membrane to protect M. tuberculosis from reactive oxygen intermediates at the bacterial surface. To examine the role of the Cu,Zn superoxide dismutase in protecting M. tuberculosis from the toxic effects of exogenously generated reactive oxygen species, we constructed a null mutation in the sodC gene. In this report, we show that the M. tuberculosis sodC mutant is readily killed by superoxide generated externally, while the isogenic parental M. tuberculosis is unaffected under these conditions. Furthermore, the sodC mutant has enhanced susceptibility to killing by gamma interferon (IFN-gamma)-activated murine peritoneal macrophages producing oxidative burst products but is unaffected by macrophages not activated by IFN-gamma or by macrophages from respiratory burst-deficient mice. These observations establish that the Cu,Zn superoxide dismutase contributes to the resistance of M. tuberculosis against oxidative burst products generated by activated macrophages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phagocytic Superoxide Specifically Damages an Extracytoplasmic Target to Inhibit or Kill Salmonella

BACKGROUND The phagocytic oxidative burst is a primary effector of innate immunity that protects against bacterial infection. However, the mechanism by which reactive oxygen species (ROS) kill or inhibit bacteria is not known. It is often assumed that DNA is a primary target of oxidative damage, consistent with known effects of endogenously produced ROS in the bacterial cytoplasm. But most stud...

متن کامل

Increased expression of periplasmic Cu,Zn superoxide dismutase enhances survival of Escherichia coli invasive strains within nonphagocytic cells.

We have studied the influence of periplasmic Cu,Zn superoxide dismutase on the intracellular survival of Escherichia coli strains able to invade epithelial cells by the expression of the inv gene from Yersinia pseudotuberculosis but unable to multiply intracellularly. Intracellular viability assays, confirmed by electron microscopy observations, showed that invasive strains of E. coli engineere...

متن کامل

Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase.

Superoxide dismutase (SOD) catalyzes the conversion of superoxide radical to hydrogen peroxide. Periplasmic localization of bacterial Cu,Zn-SOD has suggested a role of this enzyme in defense against extracellular phagocyte-derived reactive oxygen species. Sequence analysis of regions flanking the Salmonella typhimurium sodC gene encoding Cu,Zn-SOD demonstrates significant homology to lambda pha...

متن کامل

The Brucella abortus Cu,Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macrophages and wild-type virulence in experimentally infected mice.

Two-dimensional gel electrophoretic analysis of cell lysates from Brucella abortus 2308 and the isogenic hfq mutant Hfq3 revealed that the RNA binding protein Hfq (also known as host factor I or HF-I) is required for the optimal stationary phase production of the periplasmic Cu,Zn superoxide dismutase SodC. An isogenic sodC mutant, designated MEK2, was constructed from B. abortus 2308 by gene r...

متن کامل

The global responses of Mycobacterium tuberculosis to physiological levels of copper.

Copper (Cu) is a required micronutrient, but it is highly toxic at high concentrations. Therefore, the levels of Cu must be tightly regulated in all living cells. The phagosome of Mycobacterium tuberculosis has been shown to have variable levels of Cu. Previously, we showed that M. tuberculosis contains a copper-sensitive operon, cso, that is induced during early infection in mice. In this stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 69 8  شماره 

صفحات  -

تاریخ انتشار 2001